Automatic Railway Gate Control and Track Switching

email

ABSTRACT

Present project is designed using 8051 microcontroller to avoid railway accidents happening at unattended railway gates, if implemented in spirit. This project utilizes two powerful IR transmitters and two receivers; one pair of transmitter and receiver is fixed at up side (from where the train comes) at a level higher than a human being in exact alignment and similarly the other pair is fixed at down side of the train direction. Sensor activation time is so adjusted by calculating the time taken at a certain speed to cross at least one compartment of standard minimum size of the Indian railway. We have considered 5 seconds for this project. Sensors are fixed at 1km on both sides of the gate. We call the sensor along the train direction as ‘foreside sensor’ and the other as ‘aft side sensor’. When foreside receiver gets activated, the gate motor is turned on in one direction and the gate is closed and stays closed until the train crosses the gate and reaches aft side sensors. When aft side receiver gets activated motor turns in opposite direction and gate opens and motor stops. Buzzer will immediately sound at the fore side receiver activation and gate will close after 5 seconds, so giving time to drivers to clear gate area in order to avoid trapping between the gates and stop sound after the train has crossed.

The same principle is applied for track switching. Considering a situation wherein an express train and a local train are traveling in opposite directions on the same track; the express train is allowed to travel on the same track and the local train has to switch on to the other track. Two sensors are placed at the either sides of the junction where the track switches. If there’s a train approaching from the other side, then another sensor placed along that direction gets activated and will send an interrupt to the controller. The interrupt service routine switches the track.  Indicator lights have been provided to avoid collisions. Here the switching operation is performed using a stepper motor. Assuming that within a certain delay, the train has passed the track is switched back to its original position, allowing the first train to pass without any interruption. This concept of track switching can be applied at 1km distance from the stations.

Demo of the system

Gate Control:

Railways being the cheapest mode of transportation are preferred over all the other means .When we go through the daily newspapers we come across many railway accidents occurring at unmanned railway crossings. This is mainly due to the carelessness in manual operations or lack of workers. We, in this project has come up with a solution for the same. Using simple electronic components we have tried to automate the control of railway gates. As a train approaches the railway crossing from either side, the sensors placed at a certain distance from the gate detects the approaching train and accordingly controls the operation of the gate. Also an indicator light has been provided to alert the motorists about the approaching train.

Gate Control

Track Switching

Using the same principle as that for gate control, we have developed a concept of automatic track switching. Considering a situation wherein an express train and a local train are travelling in opposite directions on the same track; the express train is allowed to travel on the same track and the local train has to switch on to the other track. Indicator lights have been provided to avoid collisions .Here the switching operation is performed using a stepper motor. In practical purposes this can be achieved using electromagnets.

Track switching

Hardware Description

The project consists of four main parts:

  1. 8051 microcontroller
  2. IR Transmitter
  3. IR Receiver
  4. Stepper Motor Circuit

Read the rest of this entry »

JJ

This is Mr.Jose John, 21 yrs old guy, currently pursuing final year mechanical engineering, now become an enthusiastic blogger and a successful entrepreneur.
Connect with him on:

Facebook Twitter LinkedIn Google+ 


Multi-level Parking System

multi level parking lift

 ABSTRACT

In this project, we show the basic multilevel car parking system with two floors. Although we show the concept with two floors, it is still possible to show this concept on multiple floors. Also, in this project, we will show two floors with 4 sensors on each floor. The lift carries the car to each floor. Along with these 8 sensors, we use two separate sensors for each floor. With the help of these sensors, the lift stops automatically.

When we press a start switch, the lift automatically starts and immediately senses the space in the parking station. If the space is available, the lift will start or stop on particular floor, which is displayed in the LCD. If no space is available, the lift stops and displays the message “no space”.

If all the spaces are vacant, the lift will park the vehicle on priority basis.

PROJECT HISTORY

The earliest known multi-storey car park was built in 1918. It was built for the Hotel La Salle in Chicago, IL at 215 West Washington Street in the West Loop area of downtown. It was designed by Holabird and Roche. The Hotel La Salle was demolished in 1976, but the parking structure remained because it had been designated as preliminary landmark status and the structure was located several blocks from the hotel it was built to service. The Hotel LaSalle multi-storey was demolished in 2005 after failing to receive landmark status from the city of Chicago.[3] Jupiter Realty Corp. of Chicago is constructing a 49-storey apartment tower in its place,[4] with construction underway as of March 2008.

Automated car parks rely on similar technology that is used for mechanical handling and document retrieval. The driver leaves the car in an entrance module. It is then transported to a parking slot by a robot trolley. For the driver, the process of parking is reduced to leaving the car inside an entrance module.

At peak periods a wait may be involved before entering or leaving. The wait is due to the fact that loading passengers and luggage occurs at the entrance and exit location rather than at the parked stall. This loading blocks the entrance or exit from being available to others. Whether the retrieval of vehicles is faster in an automatic car park or a self park car park depends on the layout and number of exits.

Working principle

COMPLETE PROJECT IS TO BE DIVIDED INTO FEW PARTS:

 Power Supply:

In this project, we use 5 volt regulated power supply. For this purpose, we use a single step down transformer with full wave rectifier circuit. In the rectifier circuit, we use two diodes as a full wave rectifier. One 1000mfd capacitor is used as a filter capacitor to convert pulsating dc into smooth dc. Output of the rectifier is not regulated, so for regulated power supply we use IC 7805 as a regulator. Output of the 7805 regulator is connected to one led with a resistance in series. LED works as a power indication circuit.

Here the step down transformer used is a center tap transformer. We use center tap transformer in a full wave rectifier circuit.

 Sensors:

In this project, we use a reed switch as a sensor. Reed switch is a special magnetic proximity sensor. When this reed sensor is activated by an external   magnetic field, the reed sensor is activated automatically. In the reed sensor, there are two wires inside the glass casing. When an external magnetic field affects the sensor, these plates join together and become short automatically. We use this sensor in our project to sense the position of the car and of the lift on floor. When the lift moves, it searches the reed sensor for stoppage.  We paste one magnet with the lift and when the lift move up-wards, then magnet searches the sensor. As the sensor is sensed by the magnet, the lift stops there automatically.

So whenever we want to stop the lift or check the position of the vehicle, we search the magnetic sensor. When any car is parked on the desired position, the sensor activates and provides a signal to the controller. The controller checks the change of voltage on this pin and saves this data for auto sensing logic.When sensor is active, the port pin becomes more negative and this change of voltage from high to low is our required signal.

Read the rest of this entry »

JJ

This is Mr.Jose John, 21 yrs old guy, currently pursuing final year mechanical engineering, now become an enthusiastic blogger and a successful entrepreneur.
Connect with him on:

Facebook Twitter LinkedIn Google+ 


ELECTRONIC NOTICE BOARD USING AT89S52

ABSTRACT

Notice Board is primary thing in any institution / organization or public utility places like bus stations, railway stations and parks. But sticking various notices day-to-day is a difficult process. A separate person is required to take care of this notices display. This project deals about an advanced hi-tech notice board.

The project is built around the AT89C52 micro controller from Atmel. This micro controller provides all the functionality of the display and control. It also takes care of creating different display effects for given text.

Matrix type display is designed using 5mm LED on a printed circuit board. A driver circuit is designed to drive all these LEDs. A simple PC key board can be connected to this system to enter the required text or notice. Several scrolling effects can be selected using function keys of keyboard. The scrolling spped of the text also can be changed according to user requirement.

After entering the text, the user can disconnect the keyboard. At any time the user can add or remove or alter the text according to his requirement. This project uses regulated 5V, 1A power supply. 7805 three terminal voltage regulator is used for voltage regulation. Bridge type full wave rectifier is used to rectify the ac out put of secondary of 230/12V step down transformer.

ELECTRONIC NOTICE BOARD USING AT89S52

Microcontroller:

  • AT89S52

Power Supply:

  • +5V, 750mA Regulated Power Supply

Display:

  • LED 5mm

Crystal:

  • 11.0592MHz

Communication Device:

  • RF Modules

Input:

  • PC Key Board

Applications:

  • Colleges, Schools, offices, public utility places

Read the rest of this entry »

JJ

This is Mr.Jose John, 21 yrs old guy, currently pursuing final year mechanical engineering, now become an enthusiastic blogger and a successful entrepreneur.
Connect with him on:

Facebook Twitter LinkedIn Google+ 

Related Posts Plugin for WordPress, Blogger...