Pick and Place Robot

email

ABSTRACT

 The aim of this article is to get familiarized with the modern field of robotics and to find the technology know -how. Also here we are using the sophisticated emerging technology -embedded system. Here we have designed a robot arm, controlled by a microcontroller. We choose this deign because it is the most common form of robot we can find anywhere in industries like car assembling, bottling plant, packing section etc. The driver circuits for these motors are to be controlled using 8051 microcontroller with a control key panel. The movement is established using stepper motors. pick and place robots are the small robots using for continuous purpose in the industries then let us go through some thing about pick and place robot by this article .

INTRODUCTION

WHAT IS A ROBOT?

Robot is any machine that does work on its own, automatically after it is programmed by humans. HISTORY OF ROBOTS:

The first robot’s name was Electro and his dog’s name was Sparko .They appeared at the New York world’s fair in 1939. While plugged in, Elektro could say 77 words and move backwards and forwards.

In1920’s, Karl Capek from Czechoslovakia introduced the words first    robot on stage.

PICK AND PLACE ROBOT

We are going to design & implement a small model of pick and place robot, which pick and place object any where with in 360degrees and 30 cm diameters around it. The reason for choosing project is, the most extensively form of machine is used in most of the industries like car manufacturing, shipyards, assembling machine etc.

MICROCONROLLERS FOR EMBEDDED SYSTEMS

Microprocessors and microcontroller are widely used in embedded system products.

An embedded system  is a system which is dedicated for a single purpose remains unchanged through out its entire life time. An embedded product uses a microprocessor (or microcontroller) to do one task and one task only.

STEPPER MOTOR:

A stepper motor is a widely used device that translates electrical pulses into mechanical movement. It is used for precise position control. # Increase or decrease the RPM (speed) of it.

To vary the RPM of motor we have to vary the PRF (Pulse Repetition frequency). Number of applied pulses will vary number of rotations and last to change direction we have to change pulse sequence.

 CIRCUIT WORKING

The circuit mainly consists of three modules -control system, user interface module & a high voltage driver. A control system is nothing but the microcontroller. It has got the following modules.

  1. User Interface Module.
  2. Pulse Generator Module.
  3. Timing Control Module.
  4. Output Module.

When the keys are pressed the current flows directly to the ground due to the low resistive path making no more current available to the port pins pulling it down to low state, so when ever the keys are pressed the corresponding pins are pulled down. So normally every pin are at a high state giving a value of 1 when ever the keys are pressed the pins are to the low state giving the value 0.

This change is constantly monitored to check for any user interaction. The microcontroller constantly monitors port 0 for any change in port value and if it finds any change it generates the appropriate control signals. The stepper motor driver circuit consists of two stages-low power switching stage& high power switching stage. The function of the low power switching stage is to boost up the low power signal output from the micro controller to a high power signal so as to drive the power transistor.

Care should be taken while connecting the circuit to the motor as stepper has got a tendency to produce very high reverse current compared to DC motor.

To protect the circuit for this reverse current we have connected a diode in reverse bias across the coil supply so that whenever reverse current is present this diode will sink it protecting the circuit.

Read the rest of this entry »

JJ

This is Mr.Jose John, 21 yrs old guy, currently pursuing final year mechanical engineering, now become an enthusiastic blogger and a successful entrepreneur.
Connect with him on:

Facebook Twitter LinkedIn Google+ 


Multi-level Parking System

multi level parking lift

 ABSTRACT

In this project, we show the basic multilevel car parking system with two floors. Although we show the concept with two floors, it is still possible to show this concept on multiple floors. Also, in this project, we will show two floors with 4 sensors on each floor. The lift carries the car to each floor. Along with these 8 sensors, we use two separate sensors for each floor. With the help of these sensors, the lift stops automatically.

When we press a start switch, the lift automatically starts and immediately senses the space in the parking station. If the space is available, the lift will start or stop on particular floor, which is displayed in the LCD. If no space is available, the lift stops and displays the message “no space”.

If all the spaces are vacant, the lift will park the vehicle on priority basis.

PROJECT HISTORY

The earliest known multi-storey car park was built in 1918. It was built for the Hotel La Salle in Chicago, IL at 215 West Washington Street in the West Loop area of downtown. It was designed by Holabird and Roche. The Hotel La Salle was demolished in 1976, but the parking structure remained because it had been designated as preliminary landmark status and the structure was located several blocks from the hotel it was built to service. The Hotel LaSalle multi-storey was demolished in 2005 after failing to receive landmark status from the city of Chicago.[3] Jupiter Realty Corp. of Chicago is constructing a 49-storey apartment tower in its place,[4] with construction underway as of March 2008.

Automated car parks rely on similar technology that is used for mechanical handling and document retrieval. The driver leaves the car in an entrance module. It is then transported to a parking slot by a robot trolley. For the driver, the process of parking is reduced to leaving the car inside an entrance module.

At peak periods a wait may be involved before entering or leaving. The wait is due to the fact that loading passengers and luggage occurs at the entrance and exit location rather than at the parked stall. This loading blocks the entrance or exit from being available to others. Whether the retrieval of vehicles is faster in an automatic car park or a self park car park depends on the layout and number of exits.

Working principle

COMPLETE PROJECT IS TO BE DIVIDED INTO FEW PARTS:

 Power Supply:

In this project, we use 5 volt regulated power supply. For this purpose, we use a single step down transformer with full wave rectifier circuit. In the rectifier circuit, we use two diodes as a full wave rectifier. One 1000mfd capacitor is used as a filter capacitor to convert pulsating dc into smooth dc. Output of the rectifier is not regulated, so for regulated power supply we use IC 7805 as a regulator. Output of the 7805 regulator is connected to one led with a resistance in series. LED works as a power indication circuit.

Here the step down transformer used is a center tap transformer. We use center tap transformer in a full wave rectifier circuit.

 Sensors:

In this project, we use a reed switch as a sensor. Reed switch is a special magnetic proximity sensor. When this reed sensor is activated by an external   magnetic field, the reed sensor is activated automatically. In the reed sensor, there are two wires inside the glass casing. When an external magnetic field affects the sensor, these plates join together and become short automatically. We use this sensor in our project to sense the position of the car and of the lift on floor. When the lift moves, it searches the reed sensor for stoppage.  We paste one magnet with the lift and when the lift move up-wards, then magnet searches the sensor. As the sensor is sensed by the magnet, the lift stops there automatically.

So whenever we want to stop the lift or check the position of the vehicle, we search the magnetic sensor. When any car is parked on the desired position, the sensor activates and provides a signal to the controller. The controller checks the change of voltage on this pin and saves this data for auto sensing logic.When sensor is active, the port pin becomes more negative and this change of voltage from high to low is our required signal.

Read the rest of this entry »

JJ

This is Mr.Jose John, 21 yrs old guy, currently pursuing final year mechanical engineering, now become an enthusiastic blogger and a successful entrepreneur.
Connect with him on:

Facebook Twitter LinkedIn Google+ 


ELECTRONIC NOTICE BOARD USING AT89S52

ABSTRACT

Notice Board is primary thing in any institution / organization or public utility places like bus stations, railway stations and parks. But sticking various notices day-to-day is a difficult process. A separate person is required to take care of this notices display. This project deals about an advanced hi-tech notice board.

The project is built around the AT89C52 micro controller from Atmel. This micro controller provides all the functionality of the display and control. It also takes care of creating different display effects for given text.

Matrix type display is designed using 5mm LED on a printed circuit board. A driver circuit is designed to drive all these LEDs. A simple PC key board can be connected to this system to enter the required text or notice. Several scrolling effects can be selected using function keys of keyboard. The scrolling spped of the text also can be changed according to user requirement.

After entering the text, the user can disconnect the keyboard. At any time the user can add or remove or alter the text according to his requirement. This project uses regulated 5V, 1A power supply. 7805 three terminal voltage regulator is used for voltage regulation. Bridge type full wave rectifier is used to rectify the ac out put of secondary of 230/12V step down transformer.

ELECTRONIC NOTICE BOARD USING AT89S52

Microcontroller:

  • AT89S52

Power Supply:

  • +5V, 750mA Regulated Power Supply

Display:

  • LED 5mm

Crystal:

  • 11.0592MHz

Communication Device:

  • RF Modules

Input:

  • PC Key Board

Applications:

  • Colleges, Schools, offices, public utility places

Read the rest of this entry »

JJ

This is Mr.Jose John, 21 yrs old guy, currently pursuing final year mechanical engineering, now become an enthusiastic blogger and a successful entrepreneur.
Connect with him on:

Facebook Twitter LinkedIn Google+ 

Related Posts Plugin for WordPress, Blogger...